Note

ON JOHNSON-MEHL-AVRAMI EQUATION A comment on Sarkar and Ray's criticism about the application of JMA equation to the analysis of kinetic data

R. V. Muraleedharan

METALLURGY DIVISION, BHABHA ATOMIC RESEARCH CENTRE, BOMBAY 400 085, INDIA

(Received April 14, 1991)

The contention of Sarkar and Ray that Johnson-Mehl-Avrami equation is not a true kinetic equation is disproved. It is shown that this equation can be expressed in the form of a standard kinetic equation. The results of the authors are only an approximation of Johnson-Mehl-Avrami kinetics when the fraction transformed is small.

Johnson-Mehl-Avrami equation [1, 2]

$$1 - \alpha = \exp(-(K(T)t)^{n}$$
 (1)

where α is the fraction transformed till time t, K, (T) is the rate constant and n the growth exponent had been widely used to study the kinetics of transformation involving nucleation and growth [3-5]. In a recent paper [6] Sarkar and Ray have suggested that this equation is not a true kinetic equation on the premise that it cannot be expressed in the form of a standard kinetic equation

$$d\alpha/dt = K(T)f(\alpha)$$
⁽²⁾

where K(T) is the rate constant and $f(\alpha)$ is a function of α . This is not so since Eq. (1) after suitable manipulation can be expressed in a form given by Eq. (2).

Differentiation of Eq. (1) yields

John Wiley & Sons, Limited, Chichester Akadémiai Kiadó, Budapest

$$d\alpha/dt = nK^{n}(T)(1-\alpha)t^{n-1}$$
(3)

Again from Eq. (1) we get

$$t = \{ \ln \left[\frac{1}{(1-\alpha)} \right] \}^{1/n} / K(T)$$
(4)

Substituting in Eq. (3) for t given by Eq. (4)

$$d \alpha/dt = nK(T)(1-\alpha)\{\ln [1/(1-\alpha)]\}^{(n-1)/n}$$
(5)

Equation (5) is the same as the standard kinetic equation given by Eq. (2) with

$$f(\alpha) = n(1-\alpha) \{ \ln [1/(1-\alpha)] \}^{(n-1)/n}$$
(6)

For small values of α Eq. (5) becomes

$$d \alpha/dt = nK(T)(1-\alpha)\alpha^{(n-1)/n}$$
(7)

which, according to the authors, is the modified true kinetic equation.

Taking logarithm of Eq. (5) we get

$$\ln (d \alpha/dt) = \ln(nK(T)) + \ln (1-\alpha) + [(n-1)/n] \ln\{[1/((1-\alpha))]\}$$
(8)

d ln (d
$$\alpha/dt$$
)/d ln α = d ln ($nK(T)$)/d ln $\alpha - \alpha/(1-\alpha)$ +

+
$$(n - 1)/n \{ \alpha / [(1 - \alpha) \ln (1 - \alpha)] \}$$
 (9)

when $\alpha < 1$ Eq. (9) reduces to

$$d \ln(d \alpha/dt)/d \ln \alpha = d \ln (nK(T))/d \ln \alpha - \alpha/(1-\alpha) + (n-1)/n$$
(10)

This is the equation (Eq. (15) of [6]) the authors used for kinetic plots in their paper. In the plot of $\log(d \alpha/dt) vs. \log \alpha$ (Fig. 7 of [6]) the authors claim that the gradient is given by $-\alpha/(1-\alpha)$, a term that increases monotonously. If this were the fact the curves would have ever increasing slopes. On the contrary, their plots have slopes that initially increase, reach a maximum and then decreases again, a fact that cannot be accounted by Eq. (10) but can be explained on the basis of Eq. (9).

References

- 1 W. A. Johnson and K. F. Mehl, Trans. TMS AIME, 135 (1939) 416.
- 2 M. Avrami, J. Chem. Phys., 7 (1939) 1103, 8 (1940) 212 and 9 (1941) 177.
- 3 M. G. Scott, J. Mat. Sci., 13 (1978) 291.
- 4 H. Yinnon and D. R. Uhlmann, J. Non-Cryst. Solids, 54 (1983) 253.
- 5 N. K. Gorban, M. N. Danial, and R. Kamel, Phys. Status Solidi, (a)82 (1984) 63.
- 6 S. B. Sarkar and H. S. Ray, J. Thermal Anal., 36 (1990) 231.