Note

ON JOHNSON-MEHL-AVRAMI EQUATION A comment on Sarkar and Ray's criticism about the application of JMA equation to the analysis of kinetic data

R. V. Muraleedharan

METALLURGY DIVISION, BHABHA ATOMIC RESEARCH CENTRE, BOMBAY-400 085, INDIA
(Received April 14, 1991)

Abstract

The contention of Sarkar and Ray that Johnson-Mehl-Avrami equation is not a true kinetic equation is disproved. It is shown that this equation can be expressed in the form of a standard kinetic equation. The results of the authors are only an approximation of Johnson-Mehl-Avrami kinetics when the fraction transformed is small.

Johnson-Mehl-Avrami equation [1, 2]

$$
\begin{equation*}
1-\alpha=\exp -(K(T) t)^{\mathrm{n}} \tag{1}
\end{equation*}
$$

where α is the fraction transformed till time $t, K,(T)$ is the rate constant and n the growth exponent had been widely used to study the kinetics of transformation involving nucleation and growth [3-5]. In a recent paper [6] Sarkar and Ray have suggested that this equation is not a true kinetic equation on the premise that it cannot be expressed in the form of a standard kinetic equation

$$
\begin{equation*}
\mathrm{d} \alpha / \mathrm{d} t=K(T) f(\alpha) \tag{2}
\end{equation*}
$$

where $K(T)$ is the rate constant and $f(\alpha)$ is a function of α. This is not so since Eq. (1) after suitable manipulation can be expressed in a form given by Eq. (2).

Differentiation of Eq. (1) yields

$$
\begin{equation*}
\mathrm{d} \alpha / \mathrm{d} t=n K^{\mathrm{n}}(T)(1-\alpha) t^{n-1} \tag{3}
\end{equation*}
$$

Again from Eq. (1) we get

$$
\begin{equation*}
t=\{\ln [1 /(1-\alpha)]\}^{1 / n} / K(T) \tag{4}
\end{equation*}
$$

Substituting in Eq. (3) for t given by Eq. (4)

$$
\begin{equation*}
\mathrm{d} \alpha / \mathrm{d} t=n K(T)(1-\alpha)\{\ln [1 /(1-\alpha)]\}^{(n-1) / n} \tag{5}
\end{equation*}
$$

Equation (5) is the same as the standard kinetic equation given by Eq. (2) with

$$
\begin{equation*}
f(\alpha)=n(1-\alpha)\{\ln [1 /(1-\alpha)]\}^{(n-1) / n} \tag{6}
\end{equation*}
$$

For small values of α Eq. (5) becomes

$$
\begin{equation*}
\mathrm{d} \alpha / \mathrm{d} t=n K(T)(1-\alpha) \alpha^{(n-1) / n} \tag{7}
\end{equation*}
$$

which, according to the authors, is the modified true kinetic equation.
Taking logarithm of Eq. (5) we get

$$
\begin{gather*}
\ln (\mathrm{d} \alpha / \mathrm{d} t)=\ln (n K(T))+\ln (1-\alpha)+[(n-1) / n] \ln \{[1 /((1-\alpha)]\} \tag{8}\\
\mathrm{d} \ln (\mathrm{~d} \alpha / \mathrm{d} t) / \mathrm{d} \ln \alpha=\mathrm{d} \ln (n K(T)) / \mathrm{d} \ln \alpha-\alpha /(1-\alpha)+ \\
+(n-1) / n\{\alpha /[(1-\alpha) \ln (1-\alpha)]\} \tag{9}
\end{gather*}
$$

when $\alpha<1$ Eq. (9) reduces to

$$
\begin{equation*}
\mathrm{d} \ln (\mathrm{~d} \alpha / \mathrm{d} t) / \mathrm{d} \ln \alpha=\mathrm{d} \ln (n K(T)) / \mathrm{d} \ln \alpha-\alpha /(1-\alpha)+(n-1) / n \tag{10}
\end{equation*}
$$

This is the equation (Eq. (15) of [6]) the authors used for kinetic plots in their paper. In the plot of $\log (\mathrm{d} \alpha / \mathrm{d} t) v s . \log \alpha$ (Fig. 7 of [6]) the authors claim that the gradient is given by $-\alpha /(1-\alpha)$, a term that increases monotonously. If this were the fact the curves would have ever increasing slopes. On the contrary, their plots have slopes that initially increase, reach a maximum and then decreases again, a fact that cannot be accounted by Eq. (10) but can be explained on the basis of Eq. (9).

References

[^0]
[^0]: 1 W. A. Johnson and K. F. Mehl, Trans. TMS AIME, 135 (1939) 416.
 2 M. Avrami, J. Chem. Phys., 7 (1939) 1103, 8 (1940) 212 and 9 (1941) 177.
 3 M. G. Scott, J. Mat. Sci., 13 (1978) 291.
 4 H. Yinnon and D. R. Uhlmann, J. Non-Cryst. Solids, 54 (1983) 253.
 5 N. K. Gorban, M. N. Danial, and R. Kamel, Phys. Status Solidi, (a)82 (1984) 63.
 6 S. B. Sarkar and H. S. Ray, J. Thermal Anal., 36 (1990) 231.

